TD E2: Commande d'un système linéaire - PCSI-PSI AUX ULIS
TD E2: Commande d'un système linéaire. But du chapitre. Étude des systèmes
asservis linéaires et continus. Plan prévisionnel du chapitre. I. Caractéristiques ...
Part of the document
TD E2: Commande d'un système linéaire
But du chapitre
Étude des systèmes asservis linéaires et continus.
Plan prévisionnel du chapitre
I. Caractéristiques d'un asservissement 1. Structure élémentaire
2. Transmittances
3. Cas d'une chaine de grand gain
4. Immunité par rapports aux perturbations.
5. Sensibilités aux variations
6. Précision
7. Stabilité
8. Rapidité II. Asservissement du 1er ordre 1. Problématique
2. Etude fréquentielle
3. Étude temporelle III. Asservissement du 2nd ordre 1. Problématique
2. Etude fréquentielle
Savoirs et savoir-faire
Ce qu'il faut savoir :
. Connaître les différentes définitions : fonction de transfert en
boucle fermée, signal d'erreur, erreur de position et de vitesse
. Connaître les termes : chaine directe, chaine de retour, boucle
unitaire, Ce qu'il faut savoir faire :
. Retrouver les fonctions de transfert : boucle fermée à partir de la
boucle ouverte, signal d'erreur en fonction de l'entrée
. Savoir calculer les erreurs de position et de vitesse en utilisant la
variable deLaplace Savez-vous votre cours ? Lorsque vous avez étudié votre cours, vous devez pouvoir répondre
rapidement aux questions suivantes :
. Ecrire la fonction de transfert d'un système en boucle fermée.
. Faire apparaître le schéma bloc d'un asservissement dans un montage à
AO type non-inverseur (hypothèse d'un AO 1er ordre)
. Quel est l'intérêt d'une chaine de grand gain ?
. Que devient une perturbation ?
. La chaine directe est imprécise. Quelle conséquence cela a-t-il sur
l'asservissement ?
. Définir la stabilité d'un système à partir des pôle de la FTBF Exercices I. Système du 1er ordre On considère un moteur, alimenté par une tension e(t), et tournant à la
vitesse ?(t). La vitesse est repérée par un capteur de gain : [pic] La fonction de transfert du moteur peut se mettre sous la forme :
[pic]avec H0=1/k=10.5 rad/Vs et ?m=0.5 s
La vitesse de rotation ? peut fluctuer en fonction de la présence d'une
charge qui oppose un couple résistant. Cette fluctuation est modélisée par
la vitesse perturbatrice ?r. 1. Étude de la boucle ouverte On applique à l'entrée un échelon de tension E0=10 V a. Déterminer la vitesse atteinte par le moteur en régime permanent sans
perturbation(?r=0).
b. Déterminer la fonction de transfert Us(p)/E(p) Le moteur est maintenant chargé : la vitesse est perturbée par un échelon
de vitesse : ?r(t)=- ?r0 u(t), avec ?r0=21 rad.s-1 et u(t) l'échelon unité. c. Déterminer la nouvelle vitesse (en boucle ouverte). 2. Étude de la boucle fermée. On effectue un asservissement à retour unitaire. a. Écrire la fonction de transfert en boucle fermée Us(p)/E(p), sans
perturbation (?r=0)
b. Identifier le nouveau gain statique H'0 et la nouvelle constante de
temps T, et conclure.
c. Quelle tension E'0 faut-il appliquer en entrée afin d'avoir la même
vitesse que précédemment (sans perturbation) ?
d. En tenant compte de la perturbation ?r, déterminer la vitesse finale du
moteur.
e. Conclure.
II. Correction d'un système On considère un système du premier ordre dont la fonction de transfert se
met sous la forme suivante : [pic]avec ? et A0 >0 On suppose que le retour est unitaire (B=1). 1. La fonction de transfert est-elle stable en boucle ouverte ?
2. Même question en boucle fermée ?
3. Rappeler l'expression de l'erreur statique et de vitesse. On insère dans la chaine directe, avant la fonction A une fonction de
transfert C(p). 4. Dans le cas où C(p)=K est un simple gain, calculer les nouvelles valeurs
des erreurs. Conclure si K >>1
5. Dans le cas où C est un intégrateur pur, rappeler son expression
6. En déduire les nouvelles valeurs des erreurs. La fonction de transfert
est-elle toujours stable en boucle ouvert et en boucle fermée ?
III. Étude d'un asservissement de roulis On souhaite contrôler le roulis d'un avion.
On contrôle l'angle ? à l'aide d'un moteur orientant la gouverne, et on
réalise un asservissement à retour unitaire comme le montre le schéma de la
figure suivante :
La grandeur de consigne est une tension UE (V) et la grandeur de sortie du
dispositif physique est un angle. On suppose qu'un capteur fournit une
tension proportionnelle à l'angle, le gain étant noté k (on prendra
k=1V.rad-1 pour simplifier), et que la fonction de transfert de l'ensemble
{avion+moteur} se met sous la forme (simplifiée) d'un second ordre : [pic]
avec H0=3.5 rad.s-1V-1 et ? = 0.2s. 1. Déterminer la FTBO du système (en raisonnant sur les tensions).
2. Le système est-il stable en boucle fermée ?
3. Que peut-on dire sur la précision de cet asservissement ? On
déterminera l'erreur statique et l'erreur de vitesse.
4. On place avant la fonction de transfert un gain K>0.
a. Quelles sont les nouvelles valeurs des erreurs ? (statique et de
vitesse)
b. Conclure IV. Effet d'une perturbation. On considère un asservissement dont les caractéristiques sont les
suivantes :
- chaine directe : A = H1 H2
- chaine de retour unitaire : B=1
- perturbation Ep de type échelon [pic] 1. Exprimer Us en fonction de E et de Ep
2. En déduire l'expression de l'erreur statique en fonction des fonctions
H1 et H2 On suppose que : [pic]
3. Que vaut l'erreur de position si [pic]?
4. Même question si [pic] ?
On suppose que : [pic]
5. Que vaut l'erreur de position si [pic]?
6. Même question si [pic] ?
7. Conclure
-----------------------
H2(p) Ep(p) + + - + E(p) H1(p) Us(p)