Cx linéaire P. 1 / 222 MANIFESTE POUR L'UTILISATION D'UN CX ...

Pour cette raison, les prescriptions de la théorie d'Hadamard-Rybczynski ne sont
pas ..... LA RÉSISTANCE DE L'AIR, examen des formules et des expériences,.

Part of the document


MANIFESTE POUR L'UTILISATION
D'UN CX LINÉAIRE
EN RÉGIME DE STOKES
Ce texte comporte des facilités de navigation
interne.
Pour cette raison, et si vous ne lisez pas en pdf, il
gagnera à être ouvert dans Word.
Pour naviguer agréablement dans ce fichier Word,
vérifier que les deux flèches orientées vers la
gauche et la droite ("Précédent" et "Suivant"))
figurent bien dans votre barre d'outil. Si ce n'est
le cas, installez ces flèches par : Affichage, Barres
d'outils, Personnaliser, Catégorie : Web.
Sinon, les raccourcis clavier Alt+flèche gauche ou
Alt+flèche droite produisent les mêmes résultats
(retour à l'emplacement précédent ou suivant), ceci
dans Word, et, nous semble-t-il, dans beaucoup de
visionneuses de pdf.
Version du 30/01/18
L'adresse où ce texte est téléchargeable dans sa dernière version Word
est :
http://perso.numericable.fr/gomars2/aero/cx_lineaire.doc
Résumé du présent texte :
Dans ce texte, après avoir constaté que, pour les écoulements à
très faibles Nombres de Reynolds (en-dessous de l'unité), le
Coefficient de Traînée adimensionnel actuellement en usage n'a pas de
signification physique, nous insisterons sur le fait que la définition
de cet actuel Coefficient de Traînée est de nature doublement
quadratique (puisqu'elle fait appel au carré de la vitesse et au carré
d'une longueur caractéristique). Puis nous nous ferons le défenseur
d'un nouveau Coefficient de Traînée linéaire adimensionnel (linéaire
parce que sa définition fait appel à la puissance 1 de la vitesse ainsi
qu'à la puissance 1 d'une longueur caractéristique).
Nous avons découvert l'idée (fort utile) de ce Coefficient de
Traînée linéaire adimensionnel dans un texte de Duan, He et Duan, même
si nous militons pour une version simplifiée de sa définition (due à
Horace Lamb) et différente d'un simple coefficient multiplicateur, de
sorte que la force de Traînée puisse être tirée très simplement par
simple multiplication de ce Coefficient de Traînée linéaire par les
autres paramètres en jeu dans le régime de Stokes que sont la Viscosité
Dynamique, la Vitesse de l'écoulement et une longueur caractéristique
(souvent le diamètre, mais aussi la longueur, etc.) et ceci sans aucun
coefficient multiplicateur.
Ces éléments posés nous donnerons la valeur de ce Cx linéaire
pour la sphère en régime de Stokes, puis, pour l'anecdote, sur toute la
plage des Reynolds possibles. Il faudra alors noter que la définition
de ce Cx linéaire, quoique permettant un calcul valide de la Traînée
sur toute la plage des Reynolds possibles, n'a de signification
physique que dans la plage de Stokes, plage où, pour la sphère et de
nombreux autres corps, il est constant et donc éminemment pratique.
Ceci fait, nous présenterons une collecte des Cx linéaires d'un
grand nombre de corps en régime de Stokes (ellipsoïdes de divers
élancements, disque, cylindre long ou court, palette de longueur
infinie ou non, cubes, octaèdre, tétraèdres tronqués ou non, tores, et
autres particules simples ou composites comme les conglomérats ou
chaînes rectilignes de sphères identiques ). Pour tous ces corps, ce Cx
linéaire est constant en régime de Stokes, comme c'est le cas pour la
sphère. Les cas particuliers du cylindre infini et de la palette seront
éclairés par les travaux de Kohlman et C. M. White, travaux qui
montrent que la formule de Lamb ne concerne pas, stricto sensu, le
régime de Stokes. Nous constaterons que cette formule de Lamb ne permet
pas la résolution du Cx linéaire dans le cas d'un cylindre en
décantation puisqu'elle donne le Cx linéaire en fonction du Reynolds
donc de la vitesse de décantation donc du Cx linéaire ; nous
proposerons une résolution à ce problème...
Cette collecte de Cx linéaires faite auprès de grands auteurs
(souvent grands mathématiciens), résulte en trois grands tableaux que
nous avons déjà publiés dans les Wiki-Commons.
Chemin faisant, nous aurons défini la Longueur Équivalente de
Traînée qui est l'analogue (pour le régime de Stokes) de la Surface
Équivalente de Traînée utilisée pour les hauts Reynolds.
Nous aborderons ensuite le problème du corps de moindre Traînée
à volume donné en régime de Stokes, cas où la longueur de référence
doit être la racine cubique du volume.
Vers la fin de notre texte, nous expliquerons que nous n'avons
en rien inventé ce Coefficient de Traînée linéaire adimensionnel
puisque la plupart des auteurs en pressentent le concept ou l'évoquent
sans le nommer : simplement nous pensons qu'il est grand temps de
sauter le pas et d'en faire un usage pratique et pragmatique. Un
excellent candidat pour la paternité de ce Cx linéaire semble
d'ailleurs être Lamb lui-même (1911).
Tout à la fin de ce texte, nous amorcerons l'extension de la
plage de validité de certains de ces Cx linéaires au régime d'Oseen.
Nous donnerons, dans ce régime, le Cx linéaire des cylindres de section
elliptique de longueur infinie et de la palette en incidence.
Introduction :
Dans une certaine plage de Nombre de Reynolds (dite parfois
plage de Newton, cette plage allant de 1000 à 300 000 [1]), limitée au
Reynolds 300 000 par l'accident particulier nommé « crise de la
sphère », la force de Traînée aérodynamique d'un corps apparaît comme
grossièrement proportionnelle au carré de sa vitesse.
Cette force de Traînée respecte donc peu ou prou l'équation :
F = ½ ?V² SCx
...équation où la vitesse V apparaît bien au carré, ? est la
Masse Volumique de l'air, S la surface de référence (en général la
surface frontale, mais pas forcément) et Cx le coefficient
adimensionnel de Traînée attaché à la même surface de référence).
Pour certains corps profilés, le Cx qui figure dans cette même
équation n'est pas strictement constant dans la plage de Newton : il
dépend plus ou moins du Nombre de Reynolds longitudinal de
l'écoulement.
Ce Nombre de Reynolds, nombre sans dimension qui représente
l'importance des forces d'inertie par rapport aux forces de viscosité
mises en jeu par l'écoulement, s'écrit, on s'en souvient :
Re = [pic]
...V étant toujours la vitesse de l'écoulement, L la longueur
caractéristique du corps et ?, qui apparaît au dénominateur, la
Viscosité Cinématique...
Ces nuances ayant été rappelées, il faut convenir que, lorsque
le Reynolds de l'écoulement se situe dans la plage de Newton
précédemment évoquée, la définition du Cx adimensionnel que l'on tire
de l'équation F = ½ ?V² SCx, à savoir :
[pic]
...possède vraiment une signification physique : pour beaucoup
de corps (tels que .. le corps humain ou les maisons où l'humain se
calfeutre, par exemple, mais aussi beaucoup de corps mal profilés comme
le disque, le cube, la palette carrée ou rectangulaire placé(e)s face
au vent) il est à peu près constant.
Puisque ce Cx est à peu près constant, l'évolution de la Traînée
avec la vitesse de l'écoulement est donc à très peu près quadratique :
un doublement de la vitesse de l'écoulement entraîne bien un
quadruplement de la Traînée...
C'est un comportement que les premiers aérodynamiciens ne
manquaient jamais de signaler, en particulier Eiffel qui constatait :
« Nos expériences de chute à la tour Eiffel ont montré nettement
que dans les conditions ordinaires de la pratique, la résistance de
l'air peut être représentée par la formule :
R = KSV² » [2]
Un tel comportement avait évidemment quelque chose de rassurant
à une époque où les propositions émises par le grand Newton (à savoir
la proportionnalité de la Traînée avec le carré de la vitesse)
n'avaient pas encore été vérifiées par la pratique...
À cause de ce comportement presque quadratique, mais surtout
parce que sa définition fait appel au quotient par le carré de la
vitesse V², le Cx dont nous avons donné ci-dessus la définition :
[pic]
...peut donc être appelé Cx quadratique et nous n'y manquerons
pas dans ce texte puisque nous allons y introduire également un autre
Cx, non quadratique celui-là : le Cx linéaire (mais nous y reviendrons
en temps et heure)...
Dans le présent texte, au demeurant, nous ne nous intéresserons
qu'au Cx, Coefficient adimensionnel de Traînée en repère vent, c.-à-d.
le coefficient qui renseigne sur la projection de la force
aérodynamique résultante sur la direction du courant de fluide
(généralement nommé l'axe des x, d'où le nom du coefficient Cx).
Mais il existe bien-sûr un certain nombre d'autres coefficients
adimensionnels qui expriment les efforts aérodynamiques sur un corps :
Cy, Cz Cm (pour une représentation en repère vent) ou encore Ca, Cn, Cy
etc. pour une représentation en repère corps). Des lois mathématiques
simples permettent bien-sûr le changement de repères (voir à ce sujet
notre texte : LES REPÈRES EN AÉRODYNAMIQUE).
Tout ce que nous aurons l'occasion de dire sur le Cx des corps
en régime de Stokes pourrait être dit à propos des autres coefficients
adimensionnels, spécialement parce que la linéarité qui prés