Dimensionnement d'un système d 'entraînement

Courant de démarrage, couple au démarrage, la répétitivité et le temps de ... Il
définit l'effort que la charge mécanique oppose au maintien de sa mise en ...

Part of the document


| |
|Dimensionnement d'un système d 'entraînement |
| |
| |
| |
| |
| | Les modes de démarrage . Quels sont les éléments principaux concernés par le mode de
démarrage ? Courant de démarrage, couple au démarrage, la répétitivité et le temps de
démarrage . Compléter le tableau récapitulatif suivant : |Caractéristiq|Démarrage |Démarrage |Auto |Démarreurs |Variateur de|
|ues |direct |étoile |transformateu|électroniqu|vitesse |
| | |triangle |r |es | |
|Courant de |5 à 10 In |2 à 3 In |K (rapport de|3 à 4 In |1.5 In |
|démarrage | | |transformatio| | |
| | | |n) * Id | | |
|Couple au |Max |Divisé par |0.4 à 0.85* |variable |Ajustable |
|démarrage |(démarrage|3 au |Cd | |1.5 à 2Cn |
| |brutal) |démarrage | | | |
|Perturbation |Importante|Importante |Faible |Importante |Dispositif |
|harmonique |au |au | |au |de filtrage |
| |démarrage |démarrage | |démarrage |obligatoire |
| |nulle en |nulle en | | | |
| |régime |régime | | | |
| |établi |établi | | | |
|Type de |Faible |Pompes |Forte |Ventilateur|Charge |
|charge |inertie |ventilateur|puissance, |s, pompes |importante, |
| | |s et |faible |centrifuges|toutes |
| | |compresseur|inertie | |machines |
| | |s | | | |
|Avantages |Simple et |Simple | |Performant |Performant |
| |économique|économique | |et arrêt en|contrôle la |
| | | | |douceur |vitesse |
|Impacts sur |Chute de tension | | |
|le réseau | | | |
|Couple | |C= cte |Convoyeurs, rotatives,|
|constant |[pic] | |pompes, fours, presses|
| | | |mécaniques, broyeurs |
|Couple | |C=kN2 |Pompes centrifuges, |
|quadratique |[pic] | |ventilateurs, |
| | | |compresseurs, |
| | | |centrifugeuses |
|Couple | |C=KN |Mélangeurs |
|linéaire |[pic] | | |
|Couple | | |Enrouleuse, |
|constant | | |dérouleuse, bancs |
|et puissance | | |d'essais automobiles, |
|constante | | |malaxeurs |
. Donner des exemples de machines de levage Treuils, grues ascenseurs et monte charge. . Dans quels quadrants peuvent fonctionner les machines de levage. Dans les quatre quadrants
. A la montée, dans quel quadrant se trouve l'ascenseur ? Quadrant 1.
Applications
L'étude portera sur une pompe qui doit assurer l'approvisionnement en eau
d'un centre hospitalier
(Extrait CGM 2008) Pour élever une charge de 100 kg à 10 m de hauteur, on utilise un treuil
accouplé à un moteur par l'intermédiaire d'un réducteur mécanique. Caractéristiques des appareils :
- treuil diamètre du tambour d = 20 cm, ( = 0,9
- réducteur : rapport de réduction = 60, ( = 0,85
- moteur : vitesse de rotation en charge = 1450 min-', ( = 0,85,
- diamètre de l'axe d = 20 mm. 1 - Calculer le travail utile effectué (g = 9,81). 2 - Calculer la puissance utile. 3 - Calculer le travail fourni par l'axe du moteur. 4 - Calculer la puissance mécanique fournie par le moteur. 5 - Calculer le total d'énergie consommée et la puissance totale
nécessaire. 6 - Calculer la vitesse angulaire du tambour du treuil et le couple
correspondant à la force motrice. 7 - Calculer le couple -ramené sur l'axe moteur et la force exercée par le
moteur sur l'axe du réducteur. Exercice N° 2 : Un système de levage est composé : - D'un moteur, de moment d'inertie (m = 0,008 kg.m2 qui tourne à la vitesse
n = 1 450 tr/min.
- D'un réducteur, de rapport (6/145), et de moment d'inertie négligeable.
- D'un cylindre en rotation qui tourne à la vitesse n' = 60 tr/mn et dont
l'inertie (c = 2,4 kg.m2.
- D'une masse de 200 kg se déplaçant linéairement à 1,2 m/s.
Le couple résistant de la charge est de 150 N.m à la vitesse de rotation n'
= 60 tr/min.
Le moteur d'entraînement a un couple moyen au démarrage de 12 N.m. 1 - Calculer la. vitesse angulaire du moteur. 2 - Calculer le moment d'inertie total du système, ramené à la fréquence de
rotation du moteur.
Rappel : Le moment d'inertie d'une charge tournant à la vitesse n2 ou w2
ramenée à la vitesse n1 ou w1, du moteur est : ( = ('(n2/n1)2 = ('(w2 /
wI)2.
I'inertie d'une masse M en mouvement linéaire à la vitesse v ramenée à la
vitesse w du moteur est : ( = M(v/w)2. 3 - Calculer le couple résistant ramené à la vitesse du moteur. 4 - Calculer le couple d'accélération (différence entre le couple de
démarrage et le couple résistant). 5 - Calculer le temps de démarrage. 6 - Admettons que nous voulions limiter le temps de démarrage à 0,5 s..
Quel devrait être, dans ce cas, le couple moyen de démarrage du moteur ?
7 - Pour une raison quelconque, il y a rupture de la liaison entre le
réducteur et le cylindre, la masse «tombe» à la vitesse de 0,5 m/s. Afm
d'assurer la sécurité, on a prévu un frein mécanique capable d'arrêter la
masse après 1 m de chute.
Calculer l'énergie et la puissance dissipée sous forme de chaleur par le
frein, pour stopper la charge en 4 s. On supposera que le mouvement est
uniformément varié et on ne tiendra compte que de l'inertie de la masse. Solution exercice N° 1 1 - Travail utile effectué :
W = F.L, dans ce cas F correspond au poids de la charge, soit M.g = 100 x
9,81 et L au déplacement L = 1 0 m.
Wu = Mgh = 100 x 9,81 x 10 = 9 810 J. 2 - Puissance utile :
PU = Wu/t : nous venons de calculer Wu, il faut déterminer t :
Nombre de tours de tambour nécessaire pour élever la charge de 10 m : 10/(d
= 10/0,2( = 16 tours.
- Temps mis pour faire un tour de tambour : (60/1 450) x 60 = 2,5 s.
- Temps mis pour effectuer le travail :
2,5 x 16 = 40 s.
Pu = Wu/t = 9 810/40 = 245,25 W 3 - Travail fourni par l'axe du moteur :
- Attention, les rendements se multiplient
(t X (r = 0,9 X 0,85 = 0,765
Wu = 9 810/0,765 = 12 823,5 J. 4 - Puissance mécanique fournie par le moteur :
12 823,5/40 = 320,6 W.
Le travail a été effectué en 40 s. 5 - Total de l'énergie consommée :
- Il faut tenir compte du rendement du moteur :
12 823,5/0,85 = 15 086,5 J.
- Puissance nécessaire :
15 086,5/40 = 377 W.
Vérification :
245,25/0,9/0,85/0,85 = 377 W. 6 - Vitesse angulaire du treuil et couple :
( = 2(/n = 6,28 : 2,5 = 2,5 rad/s.
C = Pu/() = 245,25/2,5 = 98,1 N.m. 7 - Couple ramené sur l'axe du moteur :
- Avec un réducteur, ce que l'on gagne en vitesse on le perd en
couple. La vitesse côté moteur a augmenté de 60, le couple diminue donc de
60, soit : 98,1/60 = 1,63 N.m.
Force exercée sur l'axe du réducteur par le moteur:
1,63/0,01 = 163 N. Solution exercice N° 2
1 - Vitesse angulaire du moteur :
( = 2(n/60 = 6,28 x 1 450/60 = 152 rad/s. 2 - Moment d'inertie total du système :
Lorsque dans un système d'entraînement, des masses tournent à des
vitesses différentes, ou se déplacent en mouvement linëaire, il faut
ramener leur moment d'inertie à la fréquence de rotation du moteur.
Inertie du moteur : (m = 0,008 kg.m2
Inertie du cylindre en rotation, ramenée au moteur:
(c = 2,4 x (60/1 450)2 = 0,0041 kg.m 2
Inertie de la masse se déplaçant linéairement, ramenée au moteur:
(m = 200 x (1,2/152)2 = 0,0125 kg.m 2 .
(t = 0,008 + 0,0041 + 0,0125
(t = 0,0246 kg.m2 . 3 - Couple résistant ramené à la vitesse du moteur :
Cr = 150 x 60/1 450 = 6,2 N.m. 4 - Couple d'accélération :
Ca = 12 - 6,2 = 5,8 N.m. 5 - Temps de démarrage :
Ca = ((' = (((()/(t
(t = (((()/Ca
(t = 0,0246 x 152/5,8 = 0,64 s. 6 - Couple d'accélération :
Ca = ((/t
Ca = 0,0246 x (152/0,5) = 7,48 N.m.
Couple moyen de démarrage du moteur:
7,48 + 6,2 = 13,68 N.m. 7. Énergie dissipée par le frein :
Wfrein = Mgh + 1/2 MV2
Mgh = 200 x 9,81 x 1 = 1962 (
1/2MV2 = 1/2 x 200 X 0,52 = 25 (
Wfrein = 1 962 + 25 = 1 987 (
Puissance dissipée sous forme de chaleur:
P = W/t = 1 987/4 = 496,76 W
-----------------------
. Documents à disposition Force motrice de Schneider
Formulaire : Chaîne cinématique . Liens internet Réducteur Moteur Masse Moteur Réducteur Masse