• Accueil
  • Top Examens
  • Top Recherches
  • Contact

29. * On considère un parallélogramme ABCD et un point M du plan. La parallèle en M à (AB) coupe (AD) et (BC) en des points respectifs E et F et la parallèle en M à (BC) coupe (AB) et (CD) en des points respectifs G et H (on suppose que E, F, G et H sont distincts des sommets du parallélogramme). Montrer que les droites (AC), (EH) et (FG) sont concourantes ou parallèles.

Accueil 29. * On considère un parallélogramme ABCD et un point M du plan. La parallèle en M à (AB) coupe (AD) et (BC) en des points respectifs E et F et la parallèle en M à (BC) coupe (AB) et (CD) en des points respectifs G et H (on suppose que E, F, G et H sont distincts des sommets du parallélogramme). Montrer que les droites (AC), (EH) et (FG) sont concourantes ou parallèles.

Popular Courses

Last Courses

Top Search

  • QUELQUES EXERCICES DE GÉOMÉTRIE Capes interne correction

  • Symétrique de l’orthocentre

  • Droite d’Euler

  • 2015 - Agrégation de mathématiques

  • correction de QUELQUES EXERCICES DE GÉOMÉTRIE Capes interne

  • QUELQUES EXERCICES DE GÉOMÉTRIE - Capes interne

  • QUELQUES EXERCICES DE GÉOMÉTRIE

Last Search

  • Inpt concour

  • Plasmolyse

  • Français 2012 mada6

  • Corrigé bac 2012

  • transmath 5°; 2016

  • transmath 5° 2016

  • A peu près comme dans la vie courante, pour régler un achat

Copyright ©2020 | This template is made with by Colorlib | Privacy | Exercices Corriges