TP08_Onduleurs.doc

Etude du fonctionnement d'un montage « onduleur monophasé ». Travail en ... Faire ou refaire des exercices donnés a l'examen du BTS électrotechnique.

un extrait du document



NomOnduleursClasse : Gr :DateTP n°: Objectifs : ( Appréhender le fonctionnement des onduleurs monophasés et triphasés.
( Voir l’évolution des allures du courant suivant les charges utilisées
( Trouver la relation entre fréquence d’alimentation et fréquence de rotation d’un moteur.
Pré requis ( Cours de TGE et de STS2
Conditions de réalisation : ( Utilisation du montage alécop : onduleur triphasé alimentant un Moteur Asynchrone
(Simulation d’un montage triphasé par PSIM
(Etude du fonctionnement d’un montage « onduleur monophasé »
(Travail en 2 * 3h
(Faire ou refaire des exercices donnés a l’examen du BTS électrotechnique
Travail demandé :
Montage onduleur monophasé :
Réaliser le montage
Les deux transistors seront commandés par un GBF , fréquence 50 Hz , signal carré .
La charge sera une charge RL puis une charge RLC
R= 200 ( , L=1H et C=10µF
La tension de la source sera une tension constante de 30 V .
A quoi servent les deux condensateurs ?
Tracer l’allure de la tension aux bornes de la charge et du courant dans la charge (tension aux bornes de la résistance R) pour les deux montages RL et RLC.
Que pouvez-vous en déduire ?
Déterminer les puissances mises en jeu : du côté source, puis du côté charge .
Justifiez les valeurs
Montage onduleur triphasé :
Simulation par PSIM
Réaliser le schéma ci-dessous : les transistors sont commandés de 0 à 180° pour T1 , de 120 à 300° pour T2 , de 240 à 420° pour T3 , de 180 à 360° pour T4 , de 300 à 480° pour T5 et de 60 à 240° pour T6.
Visualiser et tracer les tensions v1 , u12 et i1
Justifier leurs allures.
Justifier que v1 = 1/3 (u12 – u31) sachant que v1+ v2+ v3 = 0

montage Alécop :
Le montage étant effectué pour une fréquence de 50 Hz , visualiser et tracer les tensions v1 , v2 , v3 , u12 et l’allure du courant de ligne i1 : on prendra la tension v1 comme référence . Les entrées seront différentielles .
Justifier les allures de ces courbes .
Faire varier la fréquence , ne pas descendre en dessous de 20 Hz.
Relever n , la fréquence de rotation du moteur et f , la fréquence en Hz des tensions d’alimentation du moteur .
Mettre les valeurs dans un tableau.
Tracer la variation de n en fonction de f et donner l’équation de la courbe ( en utilisant un tableur)
Exercices BTS :
Exercice n°1 : Partie BTS 1994 : Onduleur à transistor triphasés
Le moteur asynchrone est alimenté par l'onduleur à transistors représenté par le schéma ci-contre dans lequel les composants sont supposés parfaits.
On suppose en outre qu'il y a continuité du courant dans chaque phase.
 EMBED Designer.Drawing.6 
1) Commande "pleine onde" à f = 50 Hz :
La commande des transistors est telle que la d.d.p. v1 est donnée par la courbe ci-contre ; les d.d.p. v2 et v3 étant en retard de  EMBED Equation.3  et de  EMBED Equation.3  par rapport à v1. EMBED Designer.Drawing.6 1-1) Etablir l'expression de la valeur efficace de chaque tension en fonction de E.
1-2) On étudie maintenant la décomposition en série de Fourier de ces d.d.p. On montre que les harmoniques d'ordre n (avec n impair) peuvent s'écrire : v1 = Vn  EMBED Equation.3  sin n ( ; v2 = Vn  EMBED Equation.3  sin [n(( -  EMBED Equation.3 )] ; v3 = Vn  EMBED Equation.3  sin [n(( -  EMBED Equation.3 )] avec : Vn  EMBED Equation.3  =  EMBED Equation.3  cos n  EMBED Equation.3 .
- Calculer la valeur de E permettant d'avoir une valeur efficace V1 = 220 V pour le fondamental (n = 1).
- Calculer alors les valeurs efficaces des tensions pour les harmoniques 3, 5, 7. On négligera les harmoniques d'ordre supérieur.
1-3) On sait que le fonctionnement du moteur asynchrone est déterminé par les fondamentaux des d.d.p. fournies par l'onduleur. Mais l'existence des harmoniques entraîne des conséquences négatives concernant :
- les pertes par effet Joule dans les enroulements (elles ne seront pas étudiées dans le cadre de ce problème).
- l'existence de deux champs tournants supplémentaires ; donner l'expression des d.d.p. v1, v2, v3 pour l'harmonique 5, puis pour l'harmonique 7. En déduire le sens et la vitesse des deux champs tournants crées par les harmoniques 5 et 7.
On montre qu'il en résulte l'apparition d'un couple pulsatoire qui engendre des vibrations parasites, en particulier à faible vitesse.
2) Amélioration de la forme d'onde :
Pour atténuer les problèmes ci-contre ; on commande les transistors par des signaux en modulation de largeur d'impulsions (MLI) de façon que les d.d.p. soient données par la courbe ci-dessus dans laquelle : (1 =  EMBED Equation.3  ; (2 =  EMBED Equation.3  ; (3 =  EMBED Equation.3 . EMBED Designer.Drawing.6 2-1) Montrer que cette commande permet d'obtenir la même valeur efficace qu'en 2-1-1).
2-2) On montre que la valeur efficace de l'harmonique d'ordre n est alors :  EMBED Equation.3  =  EMBED Equation.3 .
En déduire les expressions des valeurs efficaces du fondamentale et des harmoniques 3, 5, 7.
Comparer les résultats obtenus en 1-2).
BTS Et 2007 Nouméa  
L'onduleur triphasé alimentant la machine asynchrone est commandé en pleine onde.
Les interrupteurs T1, T2, T3, T'1, T'2, T'3 (IGBT) sont commandés à la fermeture et à l'ouverture par le système de contrôle. Ils sont supposés parfaits. L'état de leur commande est indiqué sur le document réponse 3.

On suppose la tension EC constante.

Les intensités des courants i1, i2 et i3 peuvent être assimilées à des grandeurs sinusoïdales de fréquence f et de valeur efficace I (voir le tracé de leurs chronogrammes sur le document réponse 3).

On note ( = 2(f et ( = (t.
C.1- Tracer sur le document réponse 3 les chronogrammes des tensions composées u12r u23 et u31.
C.2 - En se rappelant que EMBED Equation.DSMT4 , tracer sur le document réponse 3 le chronogramme de la tension simple v1.
C.3 - Déterminer, en vous appuyant sur les chronogrammes, le déphasage (1 entre v1f (fondamental de v1) et i1. Dire clairement si i1 est en avance ou en retard sur v1f.
C.4 - La décomposition en série de Fourier de v1 est :
 EMBED Equation.DSMT4 
Exprimer la puissance active PC absorbée par la machine asynchrone en fonction de EC et I.
C.5 - Pour PC = 1155 W et EC = 318 V, déterminer la valeur de I.
C.6 - Sachant que l'on néglige les pertes dans l'onduleur, calculer .



Document réponse 3 - Partie C

 EMBED Word.Picture.8